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Ferromagnetism in the 
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The first ten terms of the high-temperature expansion of the susceptibility 
of the single-band Hubbard model in the strong correlation limit are 
obtained for arbitrary electron density. The series is analyzed by ratio 
methods and Pad6 approximants. A critical temperature is found for 
0.2 ~< p ~< 0.8; for p > 1 further terms in the series are required. 

KEY W O R D S  : Hubbard model ; ferromagnetism ; high-temperature 
expansion ; phase transition. 

1 .  I N T R O D U C T I O N  

The s ingle-band H u b b a r d  mode l  m has been the subject  of  many  theories and  
specula t ions  bo th  in the context  o f  me t a l - i n su l a to r  phase t ransi t ions  and  of  
the  magne t i sm found  in the  3d t rans i t ion  metals.  Few exact  results exist. 
Lieb and W u  (2~ found  the ground-s ta te  energy exact ly in one d imens ion  for  
one e lect ron per  a t o m  and  Shiba (a~ has extended their  solut ion to a rb i t r a ry  
e lec t ron concen t ra t ion  and has also ca lcula ted  the ze ro - tempera tu re  suscepti-  
bility. In  three  d imensions  the only exact  result  is N a g a o k a ' s  (~ p r o o f  tha t  in 
the s t rong cor re la t ion  l imit  for  n = N - 1 the g round  state is fe r romagnet ic  
in the s imple cubic  and  body-cen te red  cubic  lattices and  nonfe r romagne t i c  
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in the face-centered cubic and hexagonal close-packed lattices. He also 
showed that for n = N + 1 all four lattices have a ferromagnetic ground 
state. Here N is the number of lattice sites, n the number of electrons. 

The question remains whether for macroscopic deviations from the half- 
filled lattice magnetic ordering can occur. Some authors (5~ have conjectured 
that ferromagnetism can only exist in the presence of orbital degeneracy. 
Several approximate theories, (6-9~'2 on the other hand, do predict ferro- 
magnetism in the single-band model at least for some range of electron 
density. Recently Fukuyama and Ehrenreich (11~ have shown that in the 
coherent potential approximation the susceptibility at T = 0 is nonsingular 
for any electron density. We remark that this question of the existence of 
ferromagnetism in the absence of Hund's rule coupling is of more than 
academic interest. Kanamori, ~6~ for example, argues that a model of non- 
interacting d bands is appropriate for nickel? 

In this paper we apply the method of exact high-temperature expansions 
to the single-band Hubbard model on the fcc lattice in the limit U ~ oo and 
present evidence that for 0.2 ~< p ~< 0.8 the susceptibility diverges at a non- 
zero critical temperature. High-temperature expansions have been carried 
out in one dimension for this model by Beni et al. a3~ These authors also 
obtained the first two significant terms for the simple cubic lattice. In Section 
2 the high-temperature expansions for the quantities of interest are de- 
veloped. The analysis of the series is presented in Section 3. Section 4 contains 
a discussion of this work. 

2. T H E O R Y  OF THE H I G H - T E M P E R A T U R E  E X P A N S I O N  

The method we use to derive the expansion is a modification of the 
method of Betts et al. ~14~'4 for the high-temperature expansion of the X Y  
model partition function and we shall closely follow their notation and 
terminology. 

The Hubbard model has the Hamiltonian 

= - �89 h,(c*~cjo + c*joc~) + U ~ n ~ n ~  - h ~ m ~  (1) 
% 3 , 6  i i 

where hj = t > 0 for i , j  nearest-neighbor lattice sites and zero otherwise. 
The c and c t are electron annihilation and creation operators, n~ = c{~e~, 
mr = n~ - n~,, and we specify that the number of electrons ~.~ n~ = 
n < N, where N is the number of sites in the lattice. In the strong correlation 
limit U / k T - +  oe we need only consider the subspace of at most singly 

2 See Ref. 10 for a critical review of various approximate techniques. 
a Also see Ref. 12 for a discussion of Hund's rule in nickel. 

Also see Ref. 15 for a review of series expansion results on the X Y  model. 
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occupied sites and henceforth neglect the interaction term. We note that in 
this limit the Hubbard model is similar to the XY model; instead of a hard- 
core Bose lattice gas we have a hard-core Fermi lattice gas. For this reason 
the method of Betts et aI. ~4~ is an appropriate starting point. Since the XY 
model considered by these authors represents a half-filled lattice--a some- 
what simpler situation than a lattice at arbitrary density--a generalization of 
the procedure is necessary. 

The grand partition function of the system is given by 

ENd, Z, h) = ~ z '~ tr e-~aeo (2) 
n = O  ( h i  

where 3/z0 is the Hamiltonian (l) without the interaction term and t r ~  
indicates a trace over all n particle states with double occupancy of any site 
excluded. In the limits 1/3~o] << 1, N - +  oo, 

lim ( l /N) log  EN(fi, z, h) = log(1 + 2z) + lim ( l /N) 2 (-]?)J(~gP~)/,]! 
N ~ o ~  N--+ oo j = l  

(3) 
where 

N 

(a/d0') = (1 + 2z) -N ~ z ~ tr ~0 j (4) 
n = l  {n} 

From the partition function (3) all thermodynamic functions may be obtained. 
In particular the density p is given by 

p = lim (1/N)z(~/~z) log E (5) 
N ~ c O  

Instead of evaluating the partition function series in a finite magnetic field 
and differentiating, we obtain the zero-field susceptibility x(fi, z) per atom 
from a separate series, 

x([3, z) = fi(p + lira 2IN ~, 2 ~ (~o~m~mj)) (6) 
N ~ o o  i > j  l = O  " 

To eliminate the fugacity z from Eq. (6), we use relation (5) and series (3) to 
obtain a high-temperature series for z(f3, p) which is substituted into (6), thus 
yielding a series X(fi, p). Our task is therefore to evaluate (Y~0 z) and 
( Wo'm~mj>. 

The general term in W0 z is of the form i-I tiyc~cyo~. Each factor tiyc~cy~, 
is graphically represented by an arrow from site j to site i labeled with the 
spin direction a,. The trace of the product depends on the order of the 
operators, which is specified by an associated " t im e"  variable, earliest time 
indicating that an operator is furthest to the right. To obtain the net con- 
tribution of a shadow graph, ~14~ i.e., the same set of arrows with their time 
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ordering neglected, we must sum over all time orderings consistent with the 
constraints (a) arrow heads and tails must alternate at every site, (b) a spin 

tail may not follow a - r  head, (c) equal numbers of  heads and tails of 
both spin types must exist at each vertex. 

The shadow graphs appearing in this calculation are, except for spin 
labelings, the same as those appearing in the calculation of the partition 
function of the X Y  model. In performing the average (4) for a given time 
ordering, one associates with each site i appearing in the product a factor 
p = z(1 + 2z) -1 if an annihilation operator q t ,  q ,  appears to the right of  
the first creation operator eta, c*,,, and a factor 1 - 2p = (1 + 2z) -1 if a 
creation operator appears first. The sum over time orderings constitutes the 
vertical weight ~4~ V(g, {~}) of the labeled shadow graph g, the notation 
indicating that the vertical weight depends on the spin labeling. We define 
the spin weight W(g, {~}) as the number of  equivalent spin labelings of the 
graph g and the horizontal weight H(g) as the number of equivalent re- 
numberings of the vertices of the unlabeled shadow graph g.~14~ The corre- 
sponding bare graph g '  is obtained by replacing all connections between 
sites i,j by a single line and its lattice constant ~ ( g ' ,  L) is defined as the 
number of  weak embeddings ~16~ of the graph g '  in the lattice L. In terms of 
these quantities the partition function series is written 

( - Ky 
N-+lim~l l o g =  = log (1  + 2 z ) +  ~ l! ~ A r ( g ' , L ) ~ H ( g )  

/ = 0  gt g 

x ~,, W(g, ~)V(g, ~) (7) 
dr 

where K = fit. The susceptibility is calculated in the same way. The operators 
m, and m s are traceless and contribute only if they arise in combinations with 
other operators referring to site i. They act as decorations of  the partition 
function graphs and change the vertical weight calculation only by the added 
constraint that a tail must occur at a decorated site before a head. In the 
evaluation of the trace, a factor + 1 is associated with a decorated site 
depending on whether an up or down spin arrow occurs first. 

We obtain series of  the form 

y - - 2  

( l /N)  log E(fi, z, h = 0) = log(1 + 2z) + p(1 - 2p) ~ K s ~ as,p z 
j > 2  / = 0  

(8) 
J - 8  

kTx(P, z )  = P + P2(  1 - 2 p )  ~,, K s ~ b,,p' (9 )  
J ~ 8  l = 0  

The numbers as~, bsz are displayed in Table I up t o j  = 6 for asz, and t o j  = 9 
for bs~. 
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We evaluated the partition function series only to sixth order since we 
intend to use it only to eliminate the fugacity z in terms of the density p. 
This is achieved by using the relation (5), the series (8), and the ansatz 
P = p~ 2 + ~P=2 A~(p) K~. We then obtain a high-temperature expansion of x 
of  the form 

k T  x = p + p2(1 - p) ~ B,(o)K j (10) 

in which each term is exact in the density variable p. The analysis of  this 
series is discussed in the next section. 

3. A N A L Y S I S  OF T H E  S U S C E P T I B I L I T Y  SERIES 

We analyzed the series (10) by ratio and Pad6 approximant methods. 5 
While Pad6 approximants to g ~/y, for various values of  7, were fairly well 
converged, the ratios B,~ + 1/B,~ of successive terms in the series showed marked 
irregularities. Examination of the poles of Pad6 approximants to 
(d/dK) log x(K, p) showed the consistent appearance of a pair of poles almost 
on the imaginary axis at a comparable distance from the origin as the 
physical singularity. We tried transformations of the form 

K = o~g/(1 - / 3 ~ 2 )  (11) 

which have the effect of stretching the imaginary axis and contracting the 
real axis. Transformations of  this type have been successfully applied to the 
two-dimensional X Y  model by Betts et aI. (19) We found that the transforma- 
tion (11) for ~ = 0.75 and/3 = 0.65 had a smoothing effect on the series. 
In Fig. 1 the ratio B,/B~_I  of the transformed series is plotted against 1/n for 
several densities. Extrapolating to 1/n = 0 yields an estimate of the critical 
temperature/~g-1. I t  can be seen that for p = 0.4, 0.55, 0.65 (curves B, C, D) 
the ratios seem to have settled down and may readily be extrapolated to 
1/n = 0. Curve A (O = 0.25) is noisier but we still expect a finite intercept. 
In all cases the results of series extrapolation are consistent with Pad6 
analysis of both the transformed and untransformed series. 

Table I I  lists real poles of Pad6 approximants to X(/~, p) for p = 0.5. 
An entry " c "  indicates that only complex poles exist. In our opinion the 
entries are converged well enough to indicate the existence of a critical point 
but not well enough to allow better than two figure determination of its 
location K'c. As Hunter and Baker (18) have pointed out, functions for which 
ratio methods are more accurate than Pad6 approximants for a given number 
of  terms in the expansion can easily be constructed. We believe X to be such a 
function. 

See Ref. 18 for a review of methods of series analysis. 



Ferromagnetism in the Single-Band Hubbard Model 165 

3.5 l I I I-- r 

3 . 0 -  

B(n-l) 

2 . 5  

- -  B . . . . . .  - -  

I I t I I 
2.0 1_ I I._ 1 I 0 

5 6 7 8 9 

1/n 

Fig. 1. Plot  o f  ra t ios  o f  t e rms  in the  t r a n s f o r m e d  suscept ibi l i ty  
series B , / B , - 1  as func t ion  o f  1/n. (A) p = 0.25, (B) p = 0.4, (C) 
p = 0.55, (D) p = 0.65. T he  da shed  lines s h o w  ex t rapo la t ion  to 
1/n = 0. 

For densities O < 0.2 and p > 0.75 the series is very noisy and it is 
difficult to extract information. We conjecture that the critical densities 
below and above which ferromagnetism does not exist are in the vicinity or 
0 = 0.15 and p = 0.8. This result is consistent with the exact proof  of 
Nagaoka ~4~ that for n = N -  1 the ferromagnetic state is not the ground 
state. 

Figure 2 shows a plot ofkTc/t as function of p as determined by the ratio 
method. In all cases Pad6 approximants to x(_K, p) yield a figure within 5 ~  
of the point plotted in the figure. 

T a b l e  II 

N / D  0 1 2 3 4 5 6 7 8 

1 
2 0.402 
3 0.369 0.492 
4 0.366 c 0.443 
5 0.603 0.414 0.424 0.428 
6 0.544 0.422 0.430 0.427 
7 0.510 0.426 0.427 
8 0.489 0.427 
9 0.475 

0.383 0.432 0.433 0.430 
c 0.433 0.432 0.425 

0.445 0.429 0.427 
0.411 0.427 
0.427 

0.427 
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kTc 2 ! ~ / ~  
-5- 

1 \ti 
I I I I I I I  F 

O0 0'.2 0]4 0.6 0.8 1.0 
P 

Fig. 2. Plot of the critical temperature kTe/t as function of the 
density p. The dashed lines represent a crude estimate in a region 
in which the series is quite noisy. 

We have also at tempted to determine the critical exponent y of  the 
susceptibility. Pad6 approximants  to (d/dK) log X(g', P) tielded ~, ~_ 1 with 
very poor  convergence. Plots of  the location of  real poles of  Pad6 approxi- 
mants  to (1/K2)(d/dK)x(K) 11~+1 and to X 1/~ had the highest density of  inter- 
sections for y = 2/3, again with poor  convergence. As in the determination 
of  the critical point, we favor the ratio method for determination of  y. The 
slope of  ratio plots B~/B~_I as function of  1/n yields a value y ~_ 1.5 for p 
close to 0.5. This value of  ; / i s  the one closest to results on other magnetic 
models, but  more terms in the series will be required before one can have any 
confidence in the result. 

Finally we note that  the series for p > 1 can be generated f rom our series 
on this lattice by letting t -+  - t. The density P then corresponds to density of  
holes, i.e., 2 - O electrons per atom. Na ga oka  ~ has shown that  for n = N + 
1 the ground state is ferromagnetic and we have at tempted to analyze our  
series in this region. While for p < 1 the terms Bj(p) are generally all positive, 
they alternate in sign for p > 1. Morevoer ,  the first nontrivial coefficient B3 
is negative. Since we expect a positive divergence of  X at the Curie point, this 
negative term effectively shortens the series. Neither ratio methods nor  Pad6 
approximants  to bo th  the original series and series obtained by various 
t ransformations yielded a critical point. We conjecture that  on this lattice 
the critical temperature for n > N, if finite, is substantially lower than for 
n < N .  
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4. DISCUSSION 

We believe that we have presented strong evidence for the existence of 
ferromagnetism in the Hubbard model even in the absence of Hund's rule 
coupling and orbital degeneracy. As noted earlier, this model may be appro- 
priate for nickel. While different estimates of the critical temperature are 
consistent, it seems that more terms in the series are required for a determina- 
tion of the critical exponent y. 
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